SECTION 410 – CHIP SEAL

410-1 DESCRIPTION:
This work shall consist of the construction of a single course chip seal for pavements and/or shoulders in accordance with the Contract documents. Chip Seal Shoulders only item to be selected only when the mainline pavement will not be chip sealed.

410-2 MATERIALS:

410-2.01 Bituminous Materials. Bituminous material shall meet the applicable requirements of §702.

A. Bituminous Material – Pavement and Shoulders. The Contractor shall ensure that the selected bituminous material is compatible with the aggregate to be used. The bituminous material shall be 702-3101P, 702-4101P, or 702-3102P.

When identified by contract documents as a high volume roadway, the bituminous material shall meet the requirements of §702, Table 702-9, High Volume Chip Seal Emulsions.

B. Bituminous Material – Shoulders Only. When specifying shoulder only items, use item 702-3301P.

C. Fog Seal – Use material meeting the requirements of §702, Table 702-7, Diluted Tack Coat, or material approved by the Director of the Materials Bureau.

410-2.02 Aggregates. The aggregate shall conform to the requirements of § 703-02, Coarse Aggregates except as modified herein. The aggregate size shall be No. 1ST or No. 1A, as specified. The aggregate’s flakiness index shall meet the requirements of Materials Method 410, “Chip Seal Guidelines.”

A. Aggregate – Pavement. When identified by contract documents as a high volume roadway, the aggregate size shall be No. 1ST. Use aggregate meeting one of the following requirements:

1. Limestone or a blend of limestone and dolomite having an acid insoluble residue content not less than 20.0%

2. Dolomite.

3. Sandstone, granite, chert, trap rock, ore tailings, or other similar non-carbonate materials.

4. Use gravel or blend two or more of: gravel, limestone, dolomite, sandstone, granite, chert, trap rock, ore tailings, or other similar materials to meet the following requirements:
 a. Size 1ST Aggregate. Produce a final blend having noncarbonate plus 1/4 inch particles comprising at least 20.0% of the total aggregate by weight with adjustments to equivalent volumes for materials of different specific gravities.
 b. Size 1A Aggregate. Produce a final blend having noncarbonate plus 1/8 inch particles comprising at least 20.0% of the total aggregate by weight with adjustments to equivalent volumes for materials of different specific gravities.

B. Aggregate - Shoulders. Use aggregate conforming to the requirements of § 703-02, Coarse Aggregates, 1ST or 1A as indicated by the contract documents.

C. Stockpile. Build an aggregate stockpile at a location approved by the Engineer. When blending multiple aggregates, use automated proportioning and blending equipment to produce a uniformly graded stockpile.

410-2.03 Cover Sand. Cover sand shall conform to the requirements of § 703-01, Fine Aggregate or § 703-02, Coarse Aggregate except as modified herein.
DETAILED SPECIFICATIONS – CHIP SEAL

<table>
<thead>
<tr>
<th>Screen Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>90-100</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-3</td>
</tr>
</tbody>
</table>

410-2.04 Material Sampling and Testing
Aggregate and liquid bituminous material is subject to QA testing by the Materials Bureau. The Engineer will evaluate any material failing QA testing to determine if it will be left in place.

A. Aggregate Stockpile.

1. **Contractor Testing.** The contractor shall perform and submit the following tests to the Regional Materials Engineer.

 a. Take three samples, according to Materials Method 5, Plant Inspector’s Manual for Bituminous Concrete Mix Production. Each sample must contain material from each face of the stockpile.

 b. Test samples in accordance with AASHTO T 11, Materials Finer than #200 Sieve in Mineral Aggregates by Washing, and AASHTO T 27, Sieve Analysis of Fine and Coarse Aggregates. Test results shall be based on the average of three tests.

 c. When required, sample and test the aggregate in accordance with Materials Method 28, Friction Aggregate Control and Test Procedures.

 d. Determine the aggregate’s flakiness index as defined by Materials Method 410, “Chip Seal Guidelines.”

2. **Department Testing and Approval.** The Department may elect to sample the stockpile prior to allowing the Contractor to work.

 The Engineer will witness the sampling of the stockpile each day of production. The sample will be acquired from the portion of the pile to be used in that day’s production. Sample point will be randomly selected by the Engineer. The sample will represent the entire quantity of aggregate placed that day.

3. **Friction Testing.** Samples shall meet appropriate friction values. All chip seal previously placed with material from a stockpile rejected for non-carbonate or acid insoluble residue content will be rejected.

B. Cover Sand. Sampling and testing of cover sand shall be performed according to the requirements of 410 2.04 A.1. Copies of test results shall be furnished to the Engineer prior to applying the cover sand.

C. Emulsion. The Engineer will sample bituminous material shipped to the site in accordance with Materials Method 702-2, “Asphalt Emulsion – Quality Assurance.”

410-2.05 Mix Design
Complete a mix design for pavements and/or shoulders in accordance with Materials Method 410. A separate mix design for the shoulder is required when contractors operations require the shoulder to be paved separately from the mainline. Mix designs shall be submitted to the Engineer a minimum of two weeks prior to the start of work.

410-3 CONSTRUCTION DETAILS:

410-3.01 Chip Seal

A. **Weather and Seasonal Limitations.** Bituminous material shall not be applied to a pavement surface when the:

 1. Surface has standing water or is saturated.
 2. Surface temperature is less than 60°F.
 3. Ambient temperature is less than 50°F.
 4. Weather conditions would prevent proper construction of the chip seal.

Chip Seals shall be placed only during the period from May 1st through September 7.
B. Equipment. All equipment shall be maintained in satisfactory working conditions at all times.

1. Sweepers
 a. Self-propelled Rotary Power Broom. The self-propelled rotary power broom shall be designed, equipped, maintained and operated so the pavement surface can be swept clean.
 b. Self-propelled Pick Up Broom. The self-propelled pick up broom shall be designed, equipped, maintained and operated so that the pavement can be swept clean. Excess aggregate shall be contained in an onboard hopper and disposed of as directed by the Engineer.

2. Liquid Bituminous Material Distributor
 a. Prior to being used on a project, this equipment shall be calibrated in accordance with ASTM D 2995 Standard Practice for Estimating Application Rate of Bituminous Distributors or an equivalent calibration procedure acceptable to the Engineer. Department personnel may request to witness calibration of equipment.
 b. The distributor shall be equipped, maintained, and operated so that the bituminous material can be applied at controlled temperature and rates from 0.05 to 0.55 gallons per square yard.
 c. The distributor shall be capable of applying bituminous material on variable widths up to 15 feet.
 d. The distributor shall uniformly apply the bituminous material at the specified rate with a maximum allowable variation of 0.02 gallons per square yard.
 e. Distributor equipment shall include a tachometer, accurate volume measuring devices, or a calibrated tank, and a thermometer for measuring temperatures of tank contents. Distributors shall be equipped with full circulation spray bars adjustable laterally and vertically. The distributor and/or transport shall be equipped with a bituminous material sampling valve.

3. Aggregate Spreader
 a. The aggregate spreader shall be a self-propelled unit capable of uniformly spreading the aggregate at the required rate on a minimum width of 6 inches wider than the width of the lane to be treated.
 b. The spreader shall be calibrated before each project using ASTM D 5624, Standard Test Method for Determining the Transverse Aggregate Spread Rate for Surface Treatment Applications. Department personnel may request to witness calibration of equipment.

4. Pneumatic Tire Roller
 a. The pneumatic tire rollers shall be self-propelled and have oscillating wheels with smooth tread tires and will have a minimum ground contact pressure of 80 psi.
 b. The tire pressure for all wheels shall be uniform within ± 5 psi.
 c. The rollers shall be operated at a maximum speed of 5 mph.
 d. Refer to Table 410-2, Number of Rollers for the minimum number of rollers required.

C. Surface Preparation. Perform all surface preparation prior to applying the wearing course.

1. Thoroughly clean the entire area to be overlaid. The surface of the pavement should be free of dirt, oil, and other foreign materials. Remove all debris and standing water.

2. Cover all manhole covers, water boxes, catch basins, and other such utility structures within the area being treated with plastic, building felt, or other material approved by the Engineer. Remove the covers each day.

3. The Contractor shall remove any epoxy, thermoplastic, preformed tape or high built waterborne pavement markings. Other markings shall be removed as ordered by the Engineer.
D. Application of Bituminous Material. Bituminous material shall be applied in a uniform, continuous spread over the section to be treated and within the temperature range recommended by the manufacturer. The Contractor shall report any field changes in application rates from the originally submitted mix design to the Engineer.

Where longitudinal joints are to occur, the application of bituminous material from the initial pass shall extend 12 inches beyond the area to be covered with aggregate. Subsequent passes of the bituminous spreader shall overlap the exposed bituminous material and the edge of the initial aggregate pass.

Uncovered bituminous material shall not be exposed to traffic. All bituminous material must be covered before opening to traffic.

The distributor shall be moving forward at proper application speed at the time the spray bar is opened. If any skipped areas or deficiencies occur, the operation shall be immediately stopped. The bituminous material shall not be applied more than 200 feet in advance of the self-propelled aggregate spreader. The distributor, when not spreading, shall be parked so that the spray bar or mechanism will not drip bituminous material on the surface of the road.

E. Application of Cover Aggregate. Immediately following the application of the bituminous material, cover aggregate shall be spread at the rate established by the contractor in the mix design. The quantity of aggregate spread may vary from the amount listed in the mix design. The Contractor shall report any field changes in application rates from the originally submitted mix design to the Engineer. Spreading shall be accomplished in such a manner that construction equipment or other vehicles shall not drive on the uncovered and newly applied bituminous material. Any free bituminous material on the surface caused by a deficient amount of cover aggregate shall be covered by broadcasting additional aggregate over the deficient area. Excess aggregate material shall be swept from the surface as directed by the Engineer.

Longitudinal joints shall be parallel to the centerline. Ensure that longitudinal joints will correspond with the edges of the proposed traffic lane. Where any construction joint occurs, the edges shall be broomed back and blended so there are no gaps and the elevations are the same, and free from ridges and depressions.

Initial rolling of cover aggregate shall occur within 5 minutes after the application of bituminous material. Cover aggregate shall receive a minimum of three roller passes within 30 minutes of bituminous material application. Use the following table to determine the minimum number of rollers required:

<table>
<thead>
<tr>
<th>Overlay width (feet)</th>
<th>Number of Rollers (minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6</td>
<td>1</td>
</tr>
<tr>
<td>6-9</td>
<td>2</td>
</tr>
<tr>
<td>9-12</td>
<td>3</td>
</tr>
<tr>
<td>12-15</td>
<td>4</td>
</tr>
</tbody>
</table>

Note – Assumes a contact width of 5 feet.

F. Sweeping. Before the roadway may be opened to unguided traffic, a light brooming of excess aggregate shall be performed. When identified by contract documents as a high volume roadway, or otherwise noted, Self-propelled Pick Up Brooms are required.

Excess aggregate shall be swept from the newly treated surface after the surface has cured for at least 24 hours. Additional sweeping shall be performed as directed by the Engineer during a 5-day period following placement of the chip seal.
G. Opening to Traffic. Unless otherwise specified, the highway shall be kept open to traffic at all times. Traffic shall be discontinued on the lane being chip sealed. After chip seal application, controlled traffic may be permitted at the Contractor’s discretion. Traffic shall be maintained at a speed not to exceed 15 mph for a period of three hours after placement of the chip seal by the use of pilot vehicles. All pilot vehicles shall be equipped with signs meeting the requirements of Section 6F.58 of the MUTCD. Use the following table to determine the number of patrol vehicles required:

<table>
<thead>
<tr>
<th>Lane Miles Surfaced In Previous Four Hours</th>
<th>Number of Patrol Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>≥ 2</td>
<td>2</td>
</tr>
</tbody>
</table>

Immediately after completion of the chip seal, the section shall be posted for a speed limit of 30 mph for a period of seven days. The signs should be posted at 1/2 mile intervals and signs showing other speed limitations should be covered for this period. All construction signs shall meet the requirements of the MUTCD.

H. Application of Fog Seal. Prior to applying fog seal, the surface shall be swept. Follow the requirements of Application of Bituminous Material. The fog seal application rate is 0.05 to 0.15 gallons per square yard.

I. Application of Cover Sand. Within 5 minutes of applying the fog seal, spread the cover sand uniformly over the chip seal. The cover sand application rate is 2-5 pounds per square yard.

J. Opening to Traffic after Fog Seal and Cover Sand. The Contractor shall determine when traffic may be permitted on the treated chip seal. More time may be required for areas with limited exposure to sunlight.

410-4 METHOD OF MEASUREMENT:

Chip seal shall be measured by the number of square yards of material in place, making no deductions for minor untreated areas such as catch basins and manholes. When the mainline pavement is chip sealed, shoulders area chip sealed will be included in the measurement for 410.0101 and 410.0102.

The liquid bituminous material for the chip seal shall be measured by the number of 60° F gallons actually incorporated in the work.

The liquid bituminous materials for the fog seal shall be measured by the number of 60° F gallons actually incorporated in the work.

The following formula will be used to calculate material quantity at 60° F:

\[
\text{Volume}_{60°F} = \text{Volume}_D \times [1 - (\Delta T \times 0.00025)]
\]

Where:

- \(\Delta T\) = Delivered Temperature (° F) – 60
- \(\text{Volume}_D\) = Quantity Delivered (gallons)

Cover Sand shall be measured by the number of square yards of material in place, making no deductions for minor untreated areas such as catch basins and manholes.

410-5 BASIS OF PAYMENT:

The unit price bid per square yard for chip seal shall include the cost of all labor, surface preparation, materials, and equipment necessary to perform the work.

The price paid per square yard will be reduced as described in Table 410-4 based on QA testing.
TABLE 410-4 CHIP SEAL PAY TABLE

<table>
<thead>
<tr>
<th>1ST Aggregate</th>
<th>Pay Reduction</th>
<th>Rejection Limit % Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve ½</td>
<td>(100 – X) * 10</td>
<td>< 97</td>
</tr>
<tr>
<td>Sieve ¼</td>
<td>(X – 15) * 5</td>
<td>> 20</td>
</tr>
<tr>
<td>Sieve 200</td>
<td>(X – 1.5) * 50</td>
<td>> 2</td>
</tr>
<tr>
<td>Flakiness Index</td>
<td>(X – 25) * 5</td>
<td>> 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1A Aggregate</th>
<th>Pay Reduction</th>
<th>Rejection Limit % Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve 1/2</td>
<td>(100 – X) * 10</td>
<td>< 97</td>
</tr>
<tr>
<td>Sieve 1/4</td>
<td>(90 – X) * 5</td>
<td>< 85</td>
</tr>
<tr>
<td>Sieve 1/8</td>
<td>(X – 15) * 5</td>
<td>> 20</td>
</tr>
<tr>
<td>Sieve 200</td>
<td>(X – 1.5) * 50</td>
<td>> 2</td>
</tr>
<tr>
<td>Flakiness Index</td>
<td>(X – 25) * 5</td>
<td>> 30</td>
</tr>
</tbody>
</table>

X = QA test value. Negative values indicate full payment. The QA results for the 200 sieve and Flakiness Index will be calculated to the nearest tenth. All other QA values will be rounded to the nearest whole number.

Liquid bituminous material used for chip seal will be paid for under a separate item as the number of 60°F gallons of material used.

Liquid bituminous material for the fog seal will be paid for under a separate item as the number of 60°F gallons of material used.

The price paid per gallon will be reduced as described in Table 410-5 based on QA testing.

TABLE 410-5

<table>
<thead>
<tr>
<th>Number of Failing QA Test Results</th>
<th>Pay Reduction of Bituminous Material Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15%</td>
</tr>
<tr>
<td>2</td>
<td>25%</td>
</tr>
</tbody>
</table>

Cover sand will be paid for under a separate item.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>410.0101</td>
<td>Chip Seal Pavement and Shoulders (1A)</td>
<td>Square Yard</td>
</tr>
<tr>
<td>410.0102</td>
<td>Chip Seal Pavement and Shoulders (1ST)</td>
<td>Square Yard</td>
</tr>
<tr>
<td>410.0103</td>
<td>Chip Seal Shoulders Only (1A)</td>
<td>Square Yard</td>
</tr>
<tr>
<td>410.0104</td>
<td>Chip Seal Shoulders Only (1ST)</td>
<td>Square Yard</td>
</tr>
<tr>
<td>410.0105</td>
<td>Liquid Bituminous Material (Chip Seal)</td>
<td>Gallons</td>
</tr>
<tr>
<td>410.0106</td>
<td>Liquid Bituminous Material (Fog Seal)</td>
<td>Gallons</td>
</tr>
<tr>
<td>410.0107</td>
<td>Cover Sand</td>
<td>Square Yard</td>
</tr>
</tbody>
</table>
DETAILED SPECIFICATIONS – CHIP SEAL

BONDING REQUIREMENTS:

A. Within 10 calendar days of receipt of a purchase order from the State, the contractor shall provide the State agency the following:

 1. **Maintenance Material Bond.** A bond in the form similar to the sample included in this Invitation for Bids with sufficient sureties approved by the State’s resident engineer guaranteeing replacement of deficient material in the form included in this Invitation for Bids. This bond shall remain in place for one year after final acceptance of the project by the State or until August 1 of the year following completion of the project, whichever is later.

 2. **Amount of Bond.** The amount of the Maintenance Material Bond shall be 100% of the amount of the project’s cost.

 3. **Requirements of Bonds.** All Bonds shall be issued by a surety company approved by NYSDOT and authorized to do business in the State of New York as a surety.

B. The procedure of the Maintenance Material Bond shall be as follows:

 1. No later than June 1 of the year following the State’s acceptance of work completed under this contract, the State will evaluate the project for aggregate retention, flushing or bleeding, aggregate embedment and bonding to the existing pavement.

 2. The contractor agrees to repair all areas that demonstrate less than 90% aggregate retention, as determined by the State, on the overall project caused by improper workmanship and/or defective materials. In addition, the contractor agrees to repair individual areas that are flushed or bleeding, as determined by the State, caused by improper workmanship and/or defective materials irrespective of the percent of aggregate retained. Such repairs, however, shall not include any damage resulting from any forces or circumstances beyond the control of the contractor. The evaluation of the chip seal (conventional and fiber reinforced) shall be made by the State’s resident engineer. If the contractor does not agree with the evaluation it may appeal to the State’s Regional Director of Operations whose decision shall be final.

 Any resultant property damage deemed by the State’s Regional Director of Operations caused by improper workmanship and/or defective materials shall be the responsibility of the Contractor.

 3. On or before June 10, in the year immediately following the State’s acceptance of the chip seal project, the State shall notify the contractor of any areas deemed deficient by the State. The contractor will initiate and complete the remediation within 30 days of notification.

 4. Prior to the performance of repairs in the field, the contractor shall supply the State’s resident engineer with copies of applicable insurance certificates. During the performance of any necessary repairs, the contractor shall comply with the all provisions of the original contract including among other things the work zone traffic control provisions.
KNOW ALL PEOPLE BY THESE PRESENTS, That we, (hereinafter called the “PRINCIPAL”)

__, and ____________________________________ of

__ (hereinafter called the “SURETY”) are held and firmly bound unto the people

of the State of New York in the full and just sum of ____________________________________ Dollars ($____________) good and lawful money of the United States of America, to the payment of which said sum of money, well and truly to be made and done the said PRINCIPAL binds itself, its heirs, executors, administrators or assignees and the SURETY binds itself, its successors or assigns, jointly and severally, firmly by these presents.

Signed and dated this _____ day of ______________, 2014.

WHEREAS, the PRINCIPAL has entered into a certain written contract bearing date on the _____ day of ______________, 2014, with the People of the State of New York for the improvement of ______________________, in the County of _________________, New York.

NOW THEREFORE, the PRINCIPAL warrants the workmanship and all materials used in the work and agrees that during the guarantee period of one year beginning after final acceptance by the State or political subdivision or until August 1 of the year following acceptance of work completed under the contract, whichever is later, it will, at its own expense make repairs which may become necessary by reason of improper workmanship or defective materials as per the following procedure:

1. No later than June 1 of the year following the State’s or the political subdivision’s acceptance of work completed under the contract, the State or political subdivision will evaluate the project for aggregate retention, flushing or bleeding, aggregate embedment and bonding to the existing pavement.

2. The PRINCIPAL agrees to repair all areas that demonstrate less than 90% aggregate retention, as determined by the State, on the overall project caused by improper workmanship and/or defective materials. In addition, the PRINCIPAL agrees to repair individual areas that are flushed or bleeding, as determined by the State, caused by improper workmanship and/or defective materials irrespective of the percent of aggregate retained. Such repairs, however, shall not include any damage resulting from any forces or circumstances beyond the control of the PRINCIPAL. The evaluation of the chip seal (conventional and fiber reinforced) shall be made by the State’s resident engineer. If the contractor does not agree with the evaluation it may appeal to the State’s Regional Director of Operations whose decision shall be final.

3. On or before June 10, in the year immediately following the State’s acceptance of the chip seal project, the State shall notify the PRINCIPAL of any areas deemed deficient by the State. The PRINCIPAL will initiate and complete the remediation within 30 days of notification.
In the event of the failure of performance by the PRINCIPAL who has failed to make repairs which may become necessary by reason of improper workmanship or defective materials, said SURETY, for value received, hereby stipulates and agrees, if requested to do so by the State, to commence such repairs within five (5) days of notification by the State of such failure by the PRINCIPAL. Such repairs shall be performed in accordance with the provisions of the current contract which require among other provisions that the SURETY shall provide necessary Work zone traffic control as well as provide the required insurance before any work is conducted.

In the event both the SURETY and the PRINCIPAL fail to perform such repairs, the State shall cause the repair to be completed by others and the SURETY and PRINCIPAL shall be jointly and severally liable for such costs.

And the said SURETY thereby stipulates and agrees that no change, extension, alteration, deduction or addition in or to the terms of the said contract or the plans or specifications accompanying same, shall in any way affect the obligations of said SURETY of its bond.

PRINCIPAL ________________________________

BY __________________________

SURETY ________________________________

BY __________________________
DETAILED SPECIFICATIONS – COLD RECYCLING

COLD RECYCLING ASPHALT CONCRETE

DESCRIPTION:
Cold recycling asphalt concrete consists of combining millings bituminous material and aggregate, reshaping and compacting the asphalt mixture as indicated in the contract documents and as shown on the plans. Unless indicated otherwise, pavement locations that are milled shall have material replaced on the same day.

MATERIALS:
Bituminous Material: Liquid bituminous material shall be obtained from a Department approved facility.

Asphalt Emulsion
Use medium setting grade of asphalt emulsion. Slow setting grades of asphalt emulsion manufactured with a minimum of 65% asphalt residue may be used with the approval of the Director, Materials Bureau. Asphalt emulsion shall be sampled according to Materials Method 702-2, “Asphalt Emulsion – Quality Assurance.” Materials Method 416 will determine whether the bituminous material requires polymer modification.

Performance Graded Binder: Use the appropriate performance graded binder for the project location. Obtain one sample per lot of performance graded binder delivered to the project.

Additives: Additives may be combined with the bituminous material prior to construction or may be added to the mix during construction. The proportion and amounts of additive shall be determined by the Contractor and approved by the Director, Materials Bureau.

Aggregates: Additional aggregates for cold recycling of pavements shall conform to the requirements of §703-02, Coarse Aggregate. The gradation and source of the aggregates shall be specified by the Contractor and included in the proposed mix design.

Reclaimed Material: Milled asphalt pavement material that has been removed and/or processed from the pavement will be referred to as reclaimed material. The reclaimed material shall pass the 2 inch sieve size.

Mix Design Guidelines: The recycled mixture consists of reclaimed material, additional aggregate, liquid bituminous material, additives and water. The mix design requirements are listed in Material Method 416.

EQUIPMENT:
Use equipment capable of:

a. Milling the existing pavement to the appropriate depth, profile, and cross section. The equipment will control profile and cross slope with a moving reference at least 30 feet in length. The moving reference may be a floating beam or ski.

b. Processing the reclaimed material to pass a 2 inch sieve

c. Mixing the reclaimed material with bituminous material

d. Paving and compacting the reclaimed material to the correct grade using a paver described by 402-3.02.

e. Controlling surge material caused by changes in paving width, and irregularities in the pavement surface.

f. Monitoring water usage with a totalizing water meter.

Any requests for alternate equipment will be approved by the Director of the Materials Bureau.
DETAILED SPECIFICATIONS – COLD RECYCLING

Calibration: Calibrate the mixing equipment prior to the start of work, in accordance with calibration procedures in Materials Method 416. Submit the calibration results for approval to the Director, Materials Bureau at least 7 days prior to the start of work.

The first calibration of each calendar year must be witnessed by Department personnel. Submit subsequent calibrations with written certification that proper procedures were followed and that all measurements and calculations are accurate. If the results submitted in subsequent calibrations are more than 5.0% different from the first calibration of the season, the equipment must be calibrated in the presence of Department personnel.

Calibration approval is valid for 90 days from the date of calibration. Provide a copy of the calibration approval letter to the Engineer before the start of work.

CONSTRUCTION:

Weather & Seasonal Limitations: Work will not be permitted when the existing pavement contains frost, or when the air surface temperature is below 45 °F or expected to drop below 45 °F within 24 hours. Material shall be placed between May 1 and October 7.

Satisfactory work performed after October 7 will be paid at 90% of the bid price for the recycling and bituminous material items.

Testing: For central plant applications, prior to starting recycling operations, test two aggregate samples to verify the gradation. Supply the test results to the Engineer before the start of work.

Once continuous production has been achieved, test four samples of the recycled mixture for gradation and total asphalt content. Submit the test results to the Engineer and Regional Materials Engineer before the end of the next workday.

For each subsequent day of production, take a minimum of one sample of the recycled mixture from each ½ mile, or fraction thereof, of pavement recycled. Test each sample for gradation and total asphalt content. Submit the test results from the mix samples taken from each ½ mile of pavement within two workdays.

If a second recycling train is brought to the project, take samples following the frequencies detailed above, including taking four samples on the first day of use.

Traffic Control: The Contractor shall provide two-way radio equipped pilot vehicles to guide traffic around recycled work. The pilot vehicle shall be equipped with signs meeting the requirements of Section 6F.58 of the MUTCD.

Milling: The milling depth in the contract documents will determine the depth of cut. The depth of cut will be measured at the centerline and maintain the existing slope, unless otherwise noted. The milled surface will meet the requirements of Section 490.

Unless otherwise noted, the pavement surface will be milled to the full width of the existing pavement.

Material Management Plan (MMP): The MMP will be completed by the Contractor and submitted to the Engineer at least 7 days prior to the pre pave meeting for review. The MMP will detail how the contractor will remove, grade, and spread material. The MMP will also explain how the Contractor will meet any additional requirements in the contract documents such as, but not limited to, changes to profile, cross section, and addition of shoulder backup. Materials Method 416 will provide a format for the MMP.

Recycling: The Contractor will produce the submitted mix design. Incorporate the bituminous material at a rate within 10% of the design rate. Changes to the bituminous material rate resulting in a greater than 10% difference from the design rate require the Engineer’s approval. The Contractor will record and report the amount and location of all changes from design values to the Engineer.

The water added shall be metered and recorded. Changes to the water rate shall be reported to the Engineer.
DETAILED SPECIFICATIONS – COLD RECYCLING

Spreading: The mixture shall be placed using a bituminous paver equipped with a profile reference and mechanically spread in a uniform layer. Excessive amounts of non-coated reclaimed material which spill onto the milled surface shall be removed, as ordered by the Engineer, prior to placing the mixture. The material will be homogeneous upon lay down.

Compaction Compact the mixture in accordance with 402-3.07 Compaction.

Use equipment meeting the requirements of §402. Establish rolling operations consistent with §402, 70 Series Compaction and Table 1 – Rolling Requirements. Proposed changes to the roller pattern shall be approved by the Engineer. Material that cannot be properly and adequately compacted to a stable condition shall be removed and replaced, as ordered by the Engineer, at the Contractor’s expense.

Rollers shall operate at a uniform speed. All turning of the compaction equipment shall be completed on material which has had a minimum of one roller pass.

TABLE 1 – ROLLING REQUIREMENTS

<table>
<thead>
<tr>
<th>Compaction Sequence</th>
<th>Roller Type</th>
<th>Compaction Type</th>
<th>Minimum # of Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>*Steel or Pneumatic</td>
<td>**Vibratory or Static</td>
<td>2</td>
</tr>
<tr>
<td>Intermediate</td>
<td>*Steel or Pneumatic</td>
<td>**Vibratory or Static</td>
<td>2</td>
</tr>
<tr>
<td>Finish</td>
<td>Steel</td>
<td>Static</td>
<td>2</td>
</tr>
</tbody>
</table>

*Either the Initial or Intermediate passes will use a pneumatic roller

**Either the Initial or Intermediate passes will operate using vibratory compaction.

Dual vibrating drum rollers meeting the requirements of a tandem roller and operating in the static mode may be used for the finish roller.

Longitudinal Joints: A longitudinal joint shall be located at the centerline. All other longitudinal joints should coincide with pavement lane lines whenever possible. If the Contractor proposes longitudinal joint locations that do not coincide with pavement lane lines, proceed as follows:

1. Pave recycled mat.
2. Compact using established roller pattern.
3. Upon next milling pass, reclaim a minimum of 6 inches of the adjoining, compacted recycled mat.

If any length of longitudinal joint is exposed at the end of the working day, construct the joint using a pneumatic tire roller to form the joint into a wedge shape and provide a smooth transition for traffic. Construct the wedge of recycled material at a slope of 1 on 8 or flatter to meet the existing pavement elevation. Do not overlap recycled material onto the existing pavement.

Tolerance: The recycled surface shall be constructed to a 3/8 inch tolerance. The elevation difference at the longitudinal joint shall be constructed to a 3/16 inch tolerance. The surface may be tested with a 15 foot straight edge or string line placed parallel to the center line of the pavement, or a 10 foot straight edge or string line placed transversely to the center line of the pavement on any portion of the pavement. The area adjacent to any fixed iron in the roadway will not be subjected to this tolerance.

Existing Pavement Cross Slopes: Unless otherwise indicated, the cross slopes of the finished cold recycling will match the existing. Desired changes to cross slope will be expressed to the Contractor prior to the pre construction meeting. The Contractor’s MMP will describe how the Contractor will adjust cross slope. If the Contractor indicates that they cannot produce the desired profile and cross slope with reasonable effort, the Engineer may consult the Director of the Materials Bureau regarding constructability of the surface.
Brooming: The pavement and shoulders shall be broomed by the Contractor, as ordered by the Engineer, to remove loose stone or reclaimed material resulting from the recycling process.

Temporary Pavement Markings: Apply temporary pavement markings meeting the requirements of §619 at the centerline and shoulder of the recycled material before the end of each workday. Maintain the temporary markings until the recycled material is overlaid.

Curing Asphalt Emulsion: Allow the recycled material to cure for a minimum of 10 days before placing the next paving course. The provisions of the paragraphs above, Brooming and Tolerance, apply from the time of recycling until the recycled material is overlaid, not to exceed 30 days.

Curing Foamed Asphalt: Allow the recycled material to cure for a minimum of 3 days before placing the next paving course. The provisions of the paragraphs above, Brooming and Tolerance, apply from the time of recycling until the recycled material is overlaid, not to exceed 30 days.

Fog Seal: A fog seal may be used to correct an overly dry surface, or to reduce the quantity of dry stone or reclaimed material pulled out by traffic. Application of fog seal requires the Engineer’s approval. The maximum rate of application shall not exceed 0.1 gallons/square yard. The Contractor shall be responsible for work zone traffic control for the fog seal operation. A work zone traffic control plan for the fog seal operation shall be developed by the Contractor and submitted to the Engineer for approval.

Damaged or Deficient Areas: Any mixture that ravels, becomes loose or broken, mixed with dirt, or is in anyway defective shall be reworked or removed and replaced with fresh recycled mix or fresh hot mixture and shall be compacted to conform with the surrounding area. Any area showing an excess or deficiency of bituminous material shall be corrected to the satisfaction of the Engineer.

Variations in tolerance, including ruts, exceeding 3/8 inch shall be satisfactorily corrected at no additional cost to the Department. The repair method will be approved by the Engineer.

All repairs or remedial actions necessary to correct damaged or deficient areas of recycled pavement shall be carried out at the Contractor’s expense. The Contractor shall not be responsible for damage to the recycled mix as a result of other work performed on the pavement or shoulders.

Repairs: Immediately after becoming aware of damage or deficiencies in the recycled mix, the Engineer will notify the Contractor or the Contractor’s designated representative. The Contractor shall make arrangements to repair the damaged or deficient areas to the satisfaction of the Engineer.

For repairs after October 7, the Contractor shall remove the recycled mix and replace with hot mix asphalt, or overlay the recycled mix with hot mix asphalt, as directed by the Engineer.

METHOD OF MEASUREMENT:

Cold recycling asphalt concrete shall be measured by the number of square yards of the original pavement surface recycled. If the millings come from a source other than the road being overlaid, the cold recycling asphalt concrete item shall be measured by the number of square yards of the pavement surface to be overlaid.

The liquid bituminous material for cold recycling asphalt concrete and fog seal shall be measured by the number of 60°F gallons actually incorporated in the work. The following formulas will be used to calculate 60°F gallons:
Asphalt Emulsion:
\[\text{Volume}_{60\,\text{°F}} = \text{Volume}_D \times [1 - (\Delta T \times 0.00025)] \]
Where:
\[\Delta T = \text{Delivered Temperature (°F) – 60} \]
\[\text{Volume}_D = \text{Quantity Delivered (gallons)} \]

PG Binder:
\[\text{Volume}_{60\,\text{°F}} = \text{Volume}_D \times [1 - (\Delta T \times 0.00035)] \]
Where:
\[\Delta T = \text{Delivered Temperature (°F) – 60} \]
\[\text{Volume}_D = \text{Quantity Delivered (gallons)} \]

Aggregate shall be measured by the number of tons incorporated in the work

BASIS OF PAYMENT:

The unit price bid per square yard for cold recycling asphalt concrete shall include the cost of all labor, materials and equipment necessary to perform the work. Bituminous material will be paid as the total volume of material used for mixing and fog seal operations. Aggregate will be paid for under their appropriate pay items. No separate payment will be made for the use of water in the mixing process. Any work required for the maintenance, replacement or repair of the cold recycled pavement prior to acceptance of the contract, shall be done at no additional cost to the State.

Satisfactory work performed after October 7 will be paid at 90% of the bid price for the recycling and bituminous material items.
DETAILED SPECIFICATIONS – CRACK SEALER

ITEM 402.76020018 – CLEANING AND SEALING CRACKS IN HOT MIX ASPHALT PAVEMENT

DESCRIPTION:

Clean and seal only primary cracks along their entire length at locations shown in the contract documents or where directed by the Engineer. Do not treat secondary radial cracks. The Engineer will determine which cracks are to be cleaned and sealed. In this specification, the word crack also means joint.

Primary cracks are defined as those greater than or equal to 1/8 inch and less than or equal to 1 inch wide.

MATERIALS:

Crack Sealant: Use a sealant meeting the requirements of Section 705-02, Highway Joint Sealants, and ASTM D6690 Type II. Deliver the sealant in the manufacturer's original sealed container legibly marked with the following information:

- Manufacturer’s name.
- Trade name of sealant.
- Manufacturer’s batch or lot number.
- ASTM D6690, Type II.
- Minimum application temperature.
- Maximum (or Safe) heating temperature.

Prior to commencing work, provide the Engineer with a copy of the manufacturer's recommendations pertaining to heating and application of the sealant.

CONSTRUCTION REQUIREMENTS:

General: Prior to commencing work, complete all pavement repairs that border pavement cracks, as outlined in the contract documents.

Furnish all equipment that is necessary for cleaning and sealing the pavement cracks. Use equipment meeting the description and/or performance requirements described herein and approved by the Engineer. Replace pavement markings that become covered and/or obliterated with sealant over an area greater than 25% of their width at no additional cost to the State.

Crack Preparation: Prepare cracks for sealing on the same day that they are to be sealed.

Use a high pressure air lance or hot air lance to thoroughly clean and dry cracks of dust, dirt, foreign material, sand and any other extraneous materials to a minimum depth of 1/2 inch immediately prior to sealing. Do not burn, scorch or ignite the adjoining pavement when using a hot air lance.

Install suitable traps or devices on the compressed air equipment to prevent moisture and oil from contaminating the crack surfaces. Maintain these devices and see that they are functioning properly.

Protect the public from potentially objectionable and/or hazardous airborne debris.

Sealant Melting: Heat and melt the sealant in a melter constructed either as a double boiler filled with a heat-transfer medium between the inner and outer shells, or with internal tubes or coils carrying the sealant through a heated oil bath and into a heated double wall hopper. The melter will be equipped with separate thermometers to indicate the temperature of the heat transfer medium and the sealant material, positive temperature controls and a mechanical agitator or a recirculating pump to ensure a homogeneous blend of the sealant. Maintain the sealant at the pouring temperature ± 10ºF, as indicated on the material packaging.

Check the discharge temperature of the sealant with a non-contact infrared thermometer. Discharge the sealant at a temperature between the manufacturer's recommended pouring and safe heating temperatures indicated on the material packaging. Submit an alternate method for measuring the discharge temperature to the Engineer for approval, if desired.
Sealing is not permitted if the melter and discharge temperatures do not meet the requirements described above.

Equip the discharge hose with a thermostatically controlled heating apparatus or insulate it to maintain the proper sealant pouring temperature. Holster the discharge hose to the melter if it is not thermostatically heat controlled. Circulate the sealant from the discharge hose into the melter to maintain the proper sealant pouring temperature.

Do not use sealant material heated beyond the safe heating temperature.

If the manufacturer’s recommendations allow the sealant to be reheated or heated in excess of six hours, recharge the melter with fresh material amounting to at least 20 percent of the volume of the material remaining in the melter.

Sealing: Sealing is to be done when ambient air temperature is at or above 40°F.

Seal the crack by placing the applicator wand in or directly over the crack opening and carefully discharging the sealant. Strike-off the sealant flush with the pavement surface using a squeegee or sealing shoe pressed firmly against the pavement. Only a narrow thin film of material measuring from 1 to 2 inches wide and 1/16 inch thick is allowed on the pavement surface after sealing the crack. If the sealant sinks into the crack more than 3/8 inch below the pavement surface, clean it with high pressure air and reseal as instructed above. Properly sealed cracks shall be watertight.

A low pressure, light spray of water may be used to accelerate cooling of the sealant. Blotting the sealant with fine aggregate is not allowed. Remove and dispose of sealant that is in excess of the specified thin film dimensions or that has not bonded to both sides of the crack.

To avoid tracking, do not allow traffic on the sealed cracks until the sealant has cured sufficiently. Clean sealed cracks damaged by traffic with high pressure air and reseal them to meet the specified thin film amount at no additional cost to the State.

METHOD OF MEASUREMENT:
The Engineer will measure the number of gallons of sealant corrected to 60°F used to properly clean and seal cracks in conformance with the specifications

BASIS OF PAYMENT:
In the unit bid price, include the cost of all material, equipment, and labor necessary to complete the work.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>402.76020018</td>
<td>Cleaning and Sealing Cracks in HMA Pavements Using Hot Asphalt Sealant</td>
<td>Gallons</td>
</tr>
</tbody>
</table>
DESCRIPTION:
This work shall consist of applying a proportioned mixture of polymer modified asphalt emulsion, aggregate, mineral filler, water and other additives to a paved surface.

MATERIALS:
Asphalt Emulsion: §702 - Bituminous Materials, use item 702-4601P.
Fog Seal – Use material meeting the requirements of §702, Table 702-7, Diluted Tack Coat, or material approved by the Director of the Materials Bureau.
Aggregates: Use material meeting the requirements of §703-02, Coarse Aggregate, with the following modifications.

A. Sand Equivalency. Minimum sand equivalency is 65%, as determined by AASHTO T 176, “Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test.” Material not meeting the minimum sand equivalent requirement may be used if it is classified as non-plastic according to AASHTO T 89, “Determining the Liquid Limit of Soils” and AASHTO T 90, “Determining the Plastic Limit and Plasticity Index of Soils.”

B. Type F1 Conditions. Use aggregate containing at least 95.0% acid insoluble residue in the plus and minus No. 30 size fractions.

C. Type F2 Conditions. Use aggregate meeting one of the following requirements:
 1. Limestone, dolomite, or blend of the two containing at least 20.0% acid insoluble residue in the plus and minus No. 30 size fractions.
 2. Gravel or blend of a natural or manufactured, limestone, dolomite, gravel, sandstone, granite, chert, traprock, ore tailings, slag, or other similar materials, having at least 25.0% acid insoluble residue in the plus and minus No. 30 size fractions.

D. Type F3 Conditions. Use aggregate meeting one of the following requirements:
 1. Limestone or a blend of limestone and dolomite containing at least 20.0% acid insoluble residue in the plus and minus No. 30 size fractions.
 2. Dolomite.
 3. Gravel or blend of a natural or manufactured, limestone, dolomite, gravel, sandstone, granite, chert, traprock, ore tailings, slag, or other similar materials, having at least 25.0% acid insoluble residue in the plus and minus No. 30 size fractions.

E. Stockpile. Build an aggregate stockpile at a location approved by the Engineer. When blending multiple aggregates, use automated proportioning and blending equipment to produce a uniformly graded stockpile. Screen the aggregate at the stockpile, prior to delivering it to the micro-surfacing equipment.

Use aggregate meeting the gradation requirements listed in §703-02, Table 703-5, Sizes of Crushed Gravel, Stone, and Slag for Slurry with the following exceptions: the range for the No. 100 sieve on the 2MS designation is 10-22% passing; and the range for the #200 sieve on the 2MS and 3MS designation is 5-15%.

The aggregate stockpile gradation shall not deviate from the mix design gradation by more than the tolerances given in Table 1 - Maximum Stockpile Tolerance. The mix design gradation value plus the stockpile tolerance cannot exceed the mix type general gradation limits.
TABLE 1 - MAXIMUM STOCKPILE TOLERANCE

<table>
<thead>
<tr>
<th>Sieve (in)</th>
<th>3/8</th>
<th>No. 4</th>
<th>No. 8</th>
<th>No. 16</th>
<th>No. 30</th>
<th>No. 50</th>
<th>No. 100</th>
<th>No. 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockpile Tolerance</td>
<td>-</td>
<td>± 5.0%</td>
<td>± 5.0%</td>
<td>± 5.0%</td>
<td>± 4.0%</td>
<td>± 3.0%</td>
<td>± 2.0%</td>
<td></td>
</tr>
</tbody>
</table>

Water: §712-01, Water.

Mineral Filler: §703-08, Mineral Filler.

Mix Design: Formulate a mix design which meets the requirements of Materials Procedure 09-01, “Micro-surfacing and Slurry Guidelines.” The mix design shall be submitted at least 14 days before the beginning of work to the Engineer in Charge, the Regional Materials Engineer and the Director of the Materials Bureau.

All materials used to develop the mixture design must be representative of the material to be used on the project. Mixture designs are valid until 3rd Saturday in September of the year in which they are submitted.

Material Sampling and Testing:

A. **Aggregate Stockpile**

1. **Contractor Testing.** The contractor shall perform and submit the following tests to the Regional Materials Engineer.
 a. Take three samples, according to Materials Method 5, Plant Inspector’s Manual for Bituminous Concrete Mix Production. Each sample must contain material from each face of the stockpile.
 b. Test samples in accordance with AASHTO T 11, Materials Finer than No. 200 Sieve in Mineral Aggregates by Washing, and AASHTO T 27, Sieve Analysis of Fine and Coarse Aggregates. Test results shall be based on the average of three tests.
 c. Sample and test the aggregate in accordance with Materials Method 28, “Friction Aggregate Control and Test Procedures,” Appendix B, Table B1 – Minimum Testing Frequencies for Slurry Surfacing Aggregates.

2. **Department Testing and Approval.** The Regional Materials Engineer will review the Contractor’s submission for specification compliance. The Regional Materials Engineer will base final approval of the stockpile on the Contractor’s submission or Department sampling and testing. Re-approval is required if additional material is added to the stockpile.
 a. Gradation - Test results shall be the average of three tests. If the percent passing is outside the gradation limits for any sieve, the stockpile will be rejected.
 b. Friction Requirements - Samples shall meet appropriate friction values. All micro-surfacing previously placed with material from a stockpile rejected for non-carbonate or acid insoluble residue content will be rejected.

B. **Emulsion.** Asphalt emulsion shall be sampled according to Materials Method 702-2, “Asphalt Emulsion – Quality Assurance.”

CONSTRUCTION DETAILS:

Weather and Seasonal Limitations: The requirements of §402-3.01 Weather and Seasonal Limitations apply, except as modified herein. Do not place micro-surfacing in the rain, fog, or if the air temperature is expected to fall below freezing within 24 hours after application. Application shall not occur unless pavement and ambient temperatures are above 50°F and rising. Stop micro-surfacing if the surface or air temperature drops below 50°F. No work will be performed after the third Saturday in September.

Equipment: Equipment must be designed and manufactured specifically for mixing and placing micro-surfacing. The equipment must be capable of accurately proportioning the constituent materials, thoroughly mixing those materials, and placing the micro-surfacing in conformance with this specification.
DETAILED SPECIFICATIONS – MICRO-SURFACING

Calibrate each mixing unit according to Materials Procedure 09-01. Calibrations must be performed using the aggregate sources listed in the mix design. Calibrations are valid for 90 days. Submit a copy of the equipment calibration to the Engineer prior to the start of work.

The emulsion, aggregate and mineral filler counters must be accessible to the Engineer and inspectors. Adjust the material delivery settings on the micro-surfacing equipment to produce the mix design. Recalibrate equipment to adjust for bulking effect of aggregate reported on mix design.

A pneumatic tire roller meeting the requirements of §402, shall be used.

Surface Preparation:
1. Ensure that pavement markings have been abraded in accordance with contract documents.
2. Remove all debris and standing water.
3. Cover all manhole covers, water boxes, catch basins, and other such utility structures within the area being paved with plastic, building felt, or other material approved by the Engineer. Remove the covers each day.
4. If directed by the engineer, dampen the pavement surface with water or apply a fog seal to the pavement surface before applying micro-surfacing. If prior to or during the preconstruction meeting, it is determined that the road surface requires a fog seal application, it shall be paid for in accordance with the appropriate pay item.

Mixture Consistency: Produce a homogeneous mixture, without lumps, balls, unmixed aggregate, segregation, excess water, or excess emulsion. The maximum allowable adjustment of the mineral filler is 1.0%. Report all mixture adjustments to the Engineer before they are made.

Application: Micro-surfacing is placed in multiple lifts; use at least two applications consisting of a scratch course and finish course for the finished product. When necessary, a rut filling course is also specified and paid for separately. Do not apply scratch course to the shoulder unless otherwise directed.

1. Scratch Course. Use a steel strike off on the spreader box in order to level the pavement surface. The scratch course surface shall be constructed to a ¼ inch tolerance. Measure the tolerance using a 10-foot straight edge or string line placed transversely to the center line of the pavement. Variations exceeding ¼ inch shall be satisfactorily corrected or resurfaced at no additional cost to the Department as ordered by the Engineer.

2. Finish Course. Apply the micro-surfacing to the pavement evenly across the entire width of the spreader box to produce a smooth riding surface with no streaks, excess buildup, thin or uncovered areas. The finish course surface shall be constructed to a ¼ inch tolerance. Measure the tolerance using a 10 foot straight edge or string line placed transversely to the center line of the pavement. Variations exceeding ¼ inch shall be satisfactorily corrected or resurfaced at no additional cost to the Department as ordered by the Engineer.

3. Rut Filling. Use a rut box to fill wheel rutting. Allow rut-filled sections to cure for a minimum of two hours after rolling.

Application rate limits are given in Table 2 - Application Limits. Application rates for rut filling operations are found in Table 3 - Rut Filling Application Rate.

<table>
<thead>
<tr>
<th>Gradation</th>
<th>Course</th>
<th>Application Rate (lb/yd²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II</td>
<td>Scratch</td>
<td>15 maximum</td>
</tr>
<tr>
<td></td>
<td>Finish</td>
<td>15-20</td>
</tr>
<tr>
<td>Type III</td>
<td>Scratch</td>
<td>20 maximum</td>
</tr>
<tr>
<td></td>
<td>Finish</td>
<td>20-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rut Depth</th>
<th>Application Rate (lbs/yd²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½” to ¾”</td>
<td>20 – 30</td>
</tr>
<tr>
<td>¾” to 1”</td>
<td>25 – 35</td>
</tr>
<tr>
<td>1” to 1-¼”</td>
<td>28 – 38</td>
</tr>
</tbody>
</table>
DETAILED SPECIFICATIONS – MICRO-SURFACING

Coverage: Do not use hand tools to expand the width of application wider than the spreader box, except as described under *Hand Finishing* below.

Joints: Minimize the number of joints. Construct joints such that no gap is present between adjacent applications. Place longitudinal joints at the edges of traffic lanes, adjacent to where pavement markings will be located. Other longitudinal joint arrangements require the Engineer’s approval. Measure the difference in grade across joints by laying a 10 foot straight edge centered on the joint perpendicular to the direction of the joint. Joint overlap and grade difference requirements are given in Table 4 - Joint Requirements.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Minimum (in.)</th>
<th>Maximum (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference in Grade</td>
<td>-</td>
<td>¼</td>
</tr>
<tr>
<td>Longitudinal Joint Overlap</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Transverse Joint Overlap</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Variable-Width Passes: Apply no more than one variable-width pass. Variable-width passes will not be permitted as the last pass unless approved by the Engineer.

Hand Finishing: Use hand held squeegees to finish areas which cannot be reached with the spreader box, and, when necessary, to produce straight lines along curbs, shoulders, and through intersections. Apply the same type of finish to the surface as is applied by the spreader box.

Excess Material: Remove all excess material in areas such as driveways, gutters, intersections, etc. each day.

Rolling: The mat shall be rolled with a pneumatic tire roller. A minimum of 3 passes of the pneumatic tire roller shall be required. One pass is defined as one movement of the roller over any point of the pavement in either direction. The rolling of the surface shall not cause the stone to stick to the wheels of the roller.

Curing: Allow each coat to cure sufficiently to resist damage from the micro-surfacing equipment, before applying the next coat. Protect the micro-surfacing from traffic until the mixture has cured sufficiently to resist damage. The time required will vary based on the mix design and environmental conditions. Repair damage from micro-surfacing equipment or traffic to the Engineer’s satisfaction.

Milling for Pavement Markings: Mill recesses for pavement markings as required by contract documents.

Quality Control Reports: The contractor shall submit a signed report daily with the following information:

<table>
<thead>
<tr>
<th>Quality Control Reports</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation</td>
<td>Daily¹</td>
</tr>
<tr>
<td>Moisture Content Aggregate</td>
<td>Daily</td>
</tr>
<tr>
<td>Gate Setting</td>
<td>Daily²</td>
</tr>
<tr>
<td>Area Paved</td>
<td>Daily</td>
</tr>
<tr>
<td>Counter Reading</td>
<td>Daily</td>
</tr>
<tr>
<td>Field Control (Type/Amount)</td>
<td>Daily³</td>
</tr>
<tr>
<td>Filler (Type/Amount)</td>
<td>Daily⁴</td>
</tr>
<tr>
<td>Water Rate</td>
<td>Daily⁵</td>
</tr>
<tr>
<td>Water Content</td>
<td>Daily⁶</td>
</tr>
<tr>
<td>Air Temperature (AM/PM)</td>
<td>Daily</td>
</tr>
</tbody>
</table>

¹ These tests will be performed on samples that are representative of that day’s production. If control test results are not complete at the end of the day, the contractor will be allowed to submit the data at a later date, not to exceed 7 days. The contractor shall provide a split of their daily sample to the Engineer.
METHOD OF MEASUREMENT:
Micro-surfacing shall be measured by the total tons of aggregate, mineral filler and asphalt emulsion used according to Materials Procedure 09-01, “Micro-surfacing and Slurry Guidelines.”

Fog seal shall be measured by the number of 60° F gallons actually incorporated in the work.

The following formula will be used to calculate material quantity at 60° F:

\[
\text{Volume}_{60^\circ F} = \text{Volume}_D \times [1 - (\Delta T \times 0.00025)]
\]

Where:
\[
\Delta T = \text{Delivered Temperature (° F)} - 60
\]
\[
\text{Volume}_D = \text{Quantity Delivered (gallons)}
\]

BASIS OF PAYMENT:
The unit price bid per ton of Micro-surfacing shall include the cost of all labor, materials and equipment necessary to perform the work. All necessary pavement cleaning, joint sealing, crack filling, pavement markings removal, milling for pavement markings and utility grade adjustments will be paid for under their appropriate items.

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>18410.1011</td>
<td>Micro-Surfacing, Type II, F1</td>
<td>Ton</td>
</tr>
<tr>
<td>18410.1021</td>
<td>Micro-Surfacing, Type II, F2</td>
<td>Ton</td>
</tr>
<tr>
<td>18410.1031</td>
<td>Micro-Surfacing, Type II, F3</td>
<td>Ton</td>
</tr>
<tr>
<td>18410.1012</td>
<td>Micro-Surfacing, Type III, F1</td>
<td>Ton</td>
</tr>
<tr>
<td>18410.1022</td>
<td>Micro-Surfacing, Type III, F2</td>
<td>Ton</td>
</tr>
<tr>
<td>18410.1032</td>
<td>Micro-Surfacing, Type III, F3</td>
<td>Ton</td>
</tr>
<tr>
<td>18410.1013</td>
<td>Micro-Surfacing, Type III, Rut Filling</td>
<td>Ton</td>
</tr>
<tr>
<td>18407.01</td>
<td>Fog Seal prior to Paving</td>
<td>Gallon</td>
</tr>
</tbody>
</table>

2. These parameters may change throughout the day. Record the amount and location of any change on the report. Record the amount and location of any change on the report.

3. Water content will be determined by taking a sample of mixed material and drying to a constant weight.
BONDING REQUIREMENTS:

A. Within 10 calendar days of receipt of a purchase order from the State, the contractor shall provide the State agency the following:
 1. Maintenance Material Bond. A bond in the form similar to the sample included in this Invitation for Bids with sufficient sureties approved by the State’s resident engineer guaranteeing replacement of deficient material in the form included in this Invitation for Bids. This bond shall remain in place for one year after final acceptance of the project by the State or until September 15 of the year following completion of the project, whichever is later.
 2. Amount of Bond. The amount of the Maintenance Material Bond shall be 100% of the amount of the project’s cost.
 3. Requirements of Bonds. All Bonds shall be issued by a surety company approved by NYSDOT and authorized to do business in the State of New York as a surety.

B. The procedure of the Maintenance Material Bond shall be as follows:
 1. No later than August 1 of the year following the State’s acceptance of work completed under this contract, the State will evaluate the project for plow damage, flushing, delamination or raveling.
 2. The contractor agrees to repair all areas that demonstrate plow damage, flushing, delamination or raveling greater than 2.0 yd2 for any single location, or greater than 5.0 yd2 for any 0.1 lane mile. Such repairs, however, shall not include any damage resulting from any forces or circumstances beyond the control of the contractor. The evaluation of the micro-surfacing shall be made by the State’s resident engineer. If the contractor does not agree with the evaluation it may appeal to the State’s Regional Director of Operations whose decision shall be final.

 Any resultant property damage deemed by the State’s Regional Director of Operations caused by improper workmanship and/or defective materials shall be the responsibility of the Contractor.

 3. On or before August 15, in the year immediately following the State’s acceptance of the micro-surfacing project, the State shall notify the contractor of any areas deemed deficient by the State. The contractor will initiate and complete the remediation within 30 days of notification.

 4. Prior to the performance of repairs in the field, the contractor shall supply the State’s resident engineer with copies of applicable insurance certificates. During the performance of any necessary repairs, the contractor shall comply with the all provisions of the original contract including among other things the work zone traffic control provisions.
DETAILED SPECIFICATIONS – MICRO-SURFACING

SAMPLE
MAINTENANCE BOND

KNOW ALL PEOPLE BY THESE PRESENTS, That we, (hereinafter called the “PRINCIPAL”)

___ of

___, and ______________________________ of

___ (hereinafter called the “SURETY”) are held and firmly bound unto the

people
of the State of New York in the full and just sum of ______________________________ Dollars
($_________________) good and lawful money of the United States of America, to the payment of which said sum
of money, well and truly to be made and done the said PRINCIPAL binds itself, its heirs, executors, administrators or
assignees and the SURETY binds itself, its successors or assigns, jointly and severally, firmly by these presents.

Signed and dated this _____ day of _____________, 2014.

WHEREAS, the PRINCIPAL has entered into a certain written contract bearing date on the _____ day of

______________, 2014, with the People of the State of New York for the improvement of ____________________,
in the County of ____________________, New York.

NOW THEREFORE, the PRINCIPAL warrants the workmanship and all materials used in the work and agrees
that during the guarantee period of one year beginning after final acceptance by the State or political subdivision or until
September 15 of the year following acceptance of work completed under the contract, whichever is later, it will, at its
own expense make repairs which may become necessary by reason of improper workmanship or defective materials as
per the following procedure:

1. No later than August 1 of the year following the State’s or the political subdivision’s acceptance of work
completed under the contract, the State or political subdivision will evaluate the project for plow damage,
flushing, delamination or raveling.

2. The PRINCIPAL agrees to repair all areas that demonstrate plow damage, flushing, delamination or
raveling greater than 2.0 square yards for any single location, or greater than 5.0 square yards for any 0.1
lane mile, as determined by the State. Such repairs however, shall not include any damage resulting from
any forces or circumstances beyond the control of the PRINCIPAL. The evaluation of the micro surfacing
shall be made by the Resident Engineer. If the PRINCIPAL does not agree with the evaluation it may
appeal to the Regional Director of Operations whose decision shall be final.

3. On or before August 15 in the year immediately following the State’s acceptance of the micro surfacing
project, the State shall notify the PRINCIPAL of any areas deemed deficient by the State. The PRINCIPAL
will initiate and complete the remediation, within 30 days of notification.

4. Prior to the performance of repairs the PRINCIPAL shall supply the Resident Engineer with copies of all
acceptable insurance certificates. During the performance of any necessary repairs, the PRINCIPAL shall
comply with the all provisions of the original contract including among other things the Work Zone Traffic
Control provisions.
In the event of the failure of performance by the PRINCIPAL who has failed to make repairs which may become necessary, said SURETY, for value received, hereby stipulates and agrees, if requested to do so by the State, to commence such repairs within five (5) days of notification by the State of such failure by the PRINCIPAL. Such repairs shall be performed in accordance with the provisions of the current contract which require among other provisions that the SURETY shall provide necessary Work zone traffic control as well as provide the required insurance before any work is conducted.

In the event both the SURETY and the PRINCIPAL fail to perform such repairs, the State shall cause the repair to be completed by others and the SURETY and PRINCIPAL shall be jointly and severally liable for such costs.

And the said SURETY thereby stipulates and agrees that no change, extension, alteration, deduction or addition in or to the terms of the said contract or the plans or specifications accompanying same, shall in any way affect the obligations of said SURETY of its bond.

PRINCIPAL ________________________________
 BY ____________________
SURETY ________________________________
 BY ____________________
DETAILED SPECIFICATIONS – PAVER PLACED SURFACE TREATMENT

18403.221102 Paver Placed Surface Treatment Type A, F1
18403.221202 Paver Placed Surface Treatment Type A, F2
18403.221302 Paver Placed Surface Treatment Type A, F3
18403.222102 Paver Placed Surface Treatment Type B, F1
18403.222202 Paver Placed Surface Treatment Type B, F2
18403.222302 Paver Placed Surface Treatment Type B, F3
18403.223102 Paver Placed Surface Treatment Type C, F1
18403.223202 Paver Placed Surface Treatment Type C, F2
18403.223302 Paver Placed Surface Treatment Type C, F3

DESCRIPTION:
Paver Placed Surface Treatment consists of a polymer modified asphalt emulsion coat followed immediately with a thin hot mix asphalt wearing course.

MATERIALS:
Mix Designs: Formulate a job mix formula that satisfies the design limits listed in Table 1 - Mixture Requirements and submit it to the Regional Materials Engineer for approval. The use of recycled asphalt pavement in these mixes is prohibited.

<table>
<thead>
<tr>
<th>TABLE 1 - MIXTURE REQUIREMENTS(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Sizes (inches)</td>
</tr>
<tr>
<td>Design Limits % Passing</td>
</tr>
<tr>
<td>3/4</td>
</tr>
<tr>
<td>1/2</td>
</tr>
<tr>
<td>3/8</td>
</tr>
<tr>
<td>1/4</td>
</tr>
<tr>
<td>No. 4</td>
</tr>
<tr>
<td>No. 8</td>
</tr>
<tr>
<td>No. 16</td>
</tr>
<tr>
<td>No. 30</td>
</tr>
<tr>
<td>No. 50</td>
</tr>
<tr>
<td>No. 100</td>
</tr>
<tr>
<td>No. 200</td>
</tr>
<tr>
<td>% PG Binder</td>
</tr>
</tbody>
</table>

(1) All aggregate percentages are based on total mass of aggregate.

Aggregate: §703-02 except as modified herein. Use coarse aggregate with a minimum coarse-aggregate angularity (CAA) of 90% one fractured face and 85% two fractured faces. The aggregate’s flakiness index shall meet the requirements of Materials Method 410.

1. Coarse Aggregate Type F1 Conditions.
 a. Limestone, dolomite or a blend of the two, having an acid-insoluble residue content of not less than 20.0%.
 b. Sandstone, granite, chert, traprock, ore tailings, slag or other similar non-carbonate materials.
c. Gravel, or a natural or manufactured blend of the following types of materials: limestone, dolomite, gravel, sandstone, granite, chert, traprock, ore tailings, slag, or other similar materials meeting the following requirements:

Type A Mixes – Noncarbonate plus No. 8 particles must comprise a minimum of 30.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 95.0% of plus No. 4 particles must be noncarbonate.

Type B Mixes – Noncarbonate plus 1/8 inch particles must comprise a minimum of 30.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 95.0% of plus No. 4 particles must be noncarbonate.

Type C Mixes – Noncarbonate plus 1/8 inch particles must comprise a minimum of 30.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 95.0% of plus 3/8 inch particles must be noncarbonate.

2. Coarse Aggregate Type F2 Conditions.

a. Limestone, dolomite or a blend of the two having an acid insoluble residue content of not less than 20.0%.

b. Sandstone, granite, chert, traprock, ore tailings, slag or other similar non-carbonate materials.

c. Gravel, or a natural or manufactured blend of the following types of materials: limestone, dolomite, gravel, sandstone, granite, chert, traprock, ore tailings, slag, or other similar materials, meeting the following requirements:

Type A Mixes – Noncarbonate plus No. 8 particles must comprise a minimum of 10.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 20.0% of plus No. 4 particles must be noncarbonate.

Type B Mixes – Noncarbonate plus 1/8 inch particles must comprise a minimum of 10.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 20.0% of plus No. 4 particles must be noncarbonate.

Type C Mixes – Noncarbonate plus 1/8 inch particles must comprise a minimum of 10.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 20.0% of plus 3/8 inch particles must be noncarbonate.

3. Coarse Aggregate Type F3 Conditions.

a. Limestone, or a blend of limestone and dolomite having an acid insoluble residue content of not less than 20.0%.

b. Dolomite.

c. Sandstone, granite, chert, traprock, ore tailings, slag or other similar non-carbonate materials.

d. Gravel, or a natural or manufactured blend of the following types of materials: limestone, dolomite, gravel, sandstone, granite, chert, traprock, ore tailings, slag, or other similar materials, meeting the following requirements:

Type A Mixes – Noncarbonate plus No. 8 particles must comprise a minimum of 10.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 20.0% of plus No. 4 particles must be noncarbonate.

Type B Mixes – Noncarbonate plus 1/8 inch particles must comprise a minimum of 10.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 20.0% of plus 4 inch particles must be noncarbonate.
DETAILED SPECIFICATIONS – PAVER PLACED SURFACE TREATMENT

Type C Mixes: Noncarbonate plus 1/8 inch particles must comprise a minimum of 10.0% of the total aggregate (by weight with adjustments to equivalent volumes for materials of different specific gravities). Additionally, a minimum of 20.0% of plus 3/8 inch particles must be noncarbonate.

4. Fine Aggregate.
 Use 100% screenings, free from deleterious materials and manufactured from sources of stone or slag meeting the requirements of §703-02, Coarse Aggregate, having a minimum sand equivalent of 60%, as determined by AASHTO T 176, “Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test.”

Mineral Filler: § 703-08, Mineral Filler.

Asphalt Binder: §401-2.04 Performance-Graded Binder. Use the appropriate performance graded binder for the project’s location.

Polymer Modified Asphalt Emulsion: § 702 - Bituminous Materials, 702-4001P.

EQUIPMENT:

1. Paving. Use a self-priming paver capable of spraying the polymer modified asphalt emulsion, applying the hot mix asphalt overlay and smoothing the surface of the mat in one pass. The self-priming paver must be equipped with a receiving hopper, feed conveyor, emulsion storage tank, metered high-pressure emulsion spray bar, and a variable width, heated screed. The screed must have the ability to be crowned at the center both positively and negatively and have vertically adjustable extensions to accommodate the desired pavement profile.

2. Compaction. Use steel wheeled double drum rollers weighing at least 10 tons, equipped with functioning water systems and scrapers to prevent material from adhering to the roller drums.

3. Hauling. Use vehicles that meet § 402-3.03, Hauling Equipment, to transport the hot mix asphalt wearing course.

CONSTRUCTION DETAILS:

Hot Mix Production: The requirements of §401-3, Construction Details apply with the following modifications. If a test value for any sieve varies from the target value by more than the production tolerance given in Table 1 - Mixture Requirements, the Regional Materials Engineer will evaluate the material represented by that test to determine acceptability.

A delivery ticket meeting the requirements of §401-4, Method of Measurement shall accompany each vehicle supplying hot mix asphalt.

Surface Preparation: Perform all surface preparation prior to applying the wearing course.

1. Thoroughly clean the entire area to be overlaid. The surface of the area to be overlaid must be free of dirt, oil, and other foreign materials. A damp surface is acceptable if favorable weather conditions are expected during paving operations.

2. Cover all manhole covers, water boxes, catch basins, and other such utility structures within the area to be paved with plastic, building felt, or other material approved by the Engineer. Reference each for location and adjustment after paving. Remove the covers each day.

3. Ensure that pavement markings have been abraded in accordance with contract documents.

Application: The requirements of § 402-3.01, Weather and Seasonal Limitations apply.

1. Apply the polymer modified asphalt emulsion at a temperature of 140 - 175°F. Provide a uniform application across the entire width to be overlaid, at a rate of 0.15 - 0.25 gallons/square yard. Continuously monitor the spray rate.
DETAILED SPECIFICATIONS – PAVER PLACED SURFACE TREATMENT

2. No equipment shall come in contact with the polymer modified asphalt emulsion before the hot mix asphalt wearing course is applied.

3. Immediately after applying the polymer modified asphalt emulsion, apply the hot mix asphalt overlay across the full width of the emulsion at a temperature of 290 - 325ºF.

4. Apply the hot mix asphalt at a rate within the appropriate application range, listed in Table 2 – Wearing Course Application Ranges. The finished treatment has a minimum thickness of 1/2 inch for Type A, and 5/8 inch for Type B and Type C.

5. Paver Placed Surface Treatment shall not be applied to freshly placed concrete surfaces. Concrete surfaces must cure for a minimum of 90 days before being overlaid.

<table>
<thead>
<tr>
<th>Type</th>
<th>Minimum (lb/yd²)</th>
<th>Maximum (lb/yd²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>B</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>C</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Compaction: Begin compaction immediately after application of the wearing course. Use a minimum of two static passes. Avoid using vibratory compaction. The roller(s) will not be allowed to stop on the freshly placed wearing course. Use an adequate number of rollers to complete compaction before the pavement temperature falls below 185°F. Protect the wearing course from traffic until the rolling operation is complete and the material has cooled sufficiently to resist damage.

Paver and Equipment Cleaning: The requirement of § 402-3.12, Paver and Equipment Cleaning apply.

Coring: The Engineer will require four cores from each section of compacted paver placed surface treatment applied below the appropriate minimum application rate listed in Table 2. The Engineer will randomly locate the four core locations. The Engineer will determine the thickness of the paver placed surface treatment and reject sections not meeting the required minimum thickness.

The Engineer may require four cores from each section of compacted paver placed surface treatment exceeding the appropriate maximum application rate, listed in Table 2, to determine the thickness of the paver placed surface treatment. The Engineer may stop paving operations immediately if the over application of the paver placed surface treatment will create problems, such as, but not limited to, reducing overhead clearance, curb reveal or guiderail height. The Engineer and Contractor will agree upon and document a maximum application rate and maximum thickness to prevent problems created by over applying the paver placed surface treatment. The Engineer will reject any additional paver placed surface treatment sections determined to exceed the maximum agreed upon application rate and thickness.

Coring is not required for sections paved within the appropriate application range, listed in Table 2 - Wearing Course Application Ranges.

All labor, materials and equipment associated with required pavement coring, including maintenance and protection of traffic and filling core holes, will be done at the Contractor's expense.

METHOD OF MEASUREMENT: Paver Placed Surface Treatment shall be measured by the number of tons of hot mix asphalt placed.

BASIS OF PAYMENT: The unit price bid per ton of Paver Placed Surface Treatment shall include the cost of all labor, materials and equipment necessary to perform the work.
DETAILED SPECIFICATIONS – PAVER PLACED SURFACE TREATMENT

Payment will be made under:

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item</th>
<th>Pay Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>18403.221102</td>
<td>Paver Placed Surface Treatment Type A, F1</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.221202</td>
<td>Paver Placed Surface Treatment Type A, F2</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.221302</td>
<td>Paver Placed Surface Treatment Type A, F3</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.222102</td>
<td>Paver Placed Surface Treatment Type B, F1</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.222202</td>
<td>Paver Placed Surface Treatment Type B, F2</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.222302</td>
<td>Paver Placed Surface Treatment Type B, F3</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.223102</td>
<td>Paver Placed Surface Treatment Type C, F1</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.223202</td>
<td>Paver Placed Surface Treatment Type C, F2</td>
<td>Tons</td>
</tr>
<tr>
<td>18403.223302</td>
<td>Paver Placed Surface Treatment Type C, F3</td>
<td>Tons</td>
</tr>
</tbody>
</table>